Scalar-on-Function Relative Error Regression for Weak Dependent Case

نویسندگان

چکیده

Analyzing the co-variability between Hilbert regressor and scalar output variable is crucial in functional statistics. In this contribution, kernel smoothing of Relative Error Regression (RE-regression) used to resolve problem. Precisely, we use relative square error establish an estimator Hilbertian regression. As asymptotic results, observations are assumed be quasi-associated, demonstrate almost complete consistency constructed estimator. The feasibility model as a predictor time series data discussed. Moreover, give some practical ideas for selecting parameter based on bootstrap procedure. Finally, empirical investigation performed examine behavior RE-regression estimation its superiority practice.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Variable Selection in Function-on-Scalar Regression.

For regression models with functional responses and scalar predictors, it is common for the number of predictors to be large. Despite this, few methods for variable selection exist for function-on-scalar models, and none account for the inherent correlation of residual curves in such models. By expanding the coefficient functions using a B-spline basis, we pose the function-on-scalar model as a...

متن کامل

Relative error prediction via kernel regression smoothers

In this article, we introduce and study local constant and our preferred local linear nonparametric regression estimators when it is appropriate to assess performance in terms of mean squared relative error of prediction. We give asymptotic results for both boundary and non-boundary cases. These are special cases of more general asymptotic results that we provide concerning the estimation of th...

متن کامل

Fast Relative-Error Approximation Algorithm for Ridge Regression

Ridge regression is one of the most popular and effective regularized regression methods, and one case of particular interest is that the number of features p is much larger than the number of samples n, i.e. p n. In this case, the standard optimization algorithm for ridge regression computes the optimal solution x⇤ in O(n2p + n3) time. In this paper, we propose a fast relativeerror approximati...

متن کامل

Longitudinal Scalar-on-Function Regression with Application to Tractography Data

We propose a class of estimation techniques for scalar-on-function regression in longitudinal studies where both outcomes, such as test results on motor functions, and functional predictors, such as brain images, may be observed at multiple visits. Our methods are motivated by a longitudinal brain diffusion tensor imaging (DTI) tractography study. One of the primary goals of the study is to eva...

متن کامل

Wavelet-based scalar-on-function finite mixture regression models

Classical finite mixture regression is useful for modeling the relationship between scalar predictors and scalar responses arising from subpopulations defined by the di ering associations between those predictors and responses. The classical finite mixture regression model is extended to incorporate functional predictors by taking a wavelet-based approach in which both the functional predictors...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Axioms

سال: 2023

ISSN: ['2075-1680']

DOI: https://doi.org/10.3390/axioms12070613